
PWM research and implementation on MCS-51

PWM approach provides an efficient way for gaining output control, as well as another

approach named PFM is the other popular way. The principle of PWM is very easy to realize

for its operation.

Figure 1. PWM and PFM Waveform

One may hear the terminology like “30% Duty” of squire wave. It means only 30% cycle

width remains at high level vs. the whole cycle. Please see Figure 2 to see how it works at

30% Duty of one pulse cycle.

Figure 2. One “Pulse” output with 30% duty.

Before talking about the method, we should introduce some parameters in PWM. The first

parameter is the "frequency of PWM" in another word “The Cycle of one PWM pulse”. And

the second parameter is "Duty of a cycle". Figure 3 shows the waveform of a PWM output.

TDH means time of high duty of a squire wave, TDL is the low duty width and TC is the period

of wave. In general design of PWM, TC is a constant for the purpose of fixing the PWM output

frequency. For a control of PWM, to remain setting TC and TDH is the main work in a PWM

control routine.

(a) PWM Wave Output

(b) PFM Wave Output

100%

30%

Figure 3. Timing diagram for PWM mechanism

By the way, it is regardless of the frequency of the PWM for how many percentage of the

PWM output duty. For some application, the frequency was required under some demand,

such as 2Khz frequency for a PWM output, etc. Here, we will introduce some

implementations for the design of PWM in MCS-51, and explain how to code for a good

control of the output.

First of all, the basic stuff we should notice is how to generate a good pulse in shape.

Generally speaking, a good squire pulse means a 50% duty pulse.

Figure 4. Regular Standard Squire Wave (50% duty)

The following phrase of assembly code provides a simple pulse generator and the output

waveform will like that of mention above.

Loop:

 Setb PWMOUT

 Mov R1,#DutyValue

 Djnz R1,$

 Clr PWMOUT

 Mov R1,#DutyValue

 Djnz R1,$

 Jmp Loop

However, the code cannot provide a good control for changing the duty of a pulse in one cycle.

It just can be seen as a square wave regenerator. The cycle of one wave is 2 times of

DutyValue. We can add some code to improve the result.

Loop:

 Setb PWMOUT

Tc
Tc Tc

TDH TDL

 Mov R1,DutyHigh

 Djnz R1,$

 Clr PWMOUT

 Mov R1,#DutyValue

 Djnz R1,$

 Jmp Loop

But there still exists a problem; even we can control the high duty via setting the value of

DutyHigh register, the low duty of a cycle still remains a fix time interval which is refereed to

the value of the constant DutyValue. For compensation of a pulse in one cycle, the equation

shown below should be afforded to remain a fix length pulse width.

 TDL = TC - TDH

So, with the same delay code phrase (refer to the code above), R1 for high duty is from the

value of DutyHigh, if R1 for duty low is from DutyLow, the value of DutyLow of a pulse

generation should be

 DutyLow = TC - DutyHigh

The pseudo code will be re-written as follow:

Loop:

 Setb PWMOUT

 Mov R1,DutyHigh

 Djnz R1,$

 Mov A,#TC

 Sub A,DutyHigh

 Mov DutyLow,A

 Clr PWMOUT

 Mov R1,#DutyValue

 Djnz R1,$

 Jmp Loop

It looks so perfect for a PWM output with good control by only setting DutyHigh, if there is

no any consideration about the margin on the side of 0(DutyHigh or DutyLow) .

By now, the code can generate a controllable duty of a PWM output. But the PWM generation

code segment is not the whole thing in one application. Let's consider some cases of

applications using PWM like motor speed controller, light dimmer... etc.

If the application program structure is like this:

MainLoop:

 ...

 ...

 Call GetSpeedSetting

 Call SetDuty

 Call OnePWMOut

 ...

 ...

 Jmp Main

;

Notice the subroutine 'OnePWMOut' just outputs one pulse wave while calling once. Even a

good control for 'ONE' pulse can't be thought a good control on whole PWM output. The

reason is the consuming time on other code segments (such as GetSppdSetting and

SetDetDuty) is varied, and which will affect the cycle of PWM pulse and then do the same

thing on the output of square wave. The following figure shows the improper effect of PWM

output result.

Figure 5. Unsteady PWM wave output

The dot line parts are the uncertain determined under the execution time of the portion of

codes except OnePWMOut procedure.

How can we design a good and steady output of PWM? The characteristics of the MPU (single

chips) will be a very important indicator. If the chip can just provides the simplest I/O

functions, the concept of “State Machine” may generally be applied. This problem will be a

little hard to solve. The chip such as PIC16C5X, the approach should be considered to make it

work for generating a good PWM wave.

Fortunately, MCS-51 provides the interrupt functions. The timer interrupt subroutine will be

applied in the case to make a steady output. Let’s consider the following pseudo code segment

working in TIMER mode 2:

Before showing the code, let’s take a look at the algorithm first:

Algorithm TMR0_ISR

1. If PWMFlag ==0 then

2. PWMFlag � 1

3. TMR0 � -(#Cycle – DutyHigh)

4. Else

5. PWMFlag � 0

6. TMR0 � -DutyHigh

7. Return

Pseudo Code List as follow:

 JB PWMFlag,PWMHigh

PWMLow: Setb PWMFlag

 Clr PWMOUT

 Mov A, DutyHigh

 Sub A, #PWMCycle

 Mov TH0,A

 Mov TL0,A

 Reti

PWMHigh: Clr PWMFlag

 Setb PWMOUT

 Mov A,#00

 Sub A,DutyHigh

 Mov TH0,A

 Mov TL0,A

 Reti

The timer mode 2 provides a reload function for setting timer count. The reload value for

timer0 is stored in TH0. So don’t forget setting the TH0 in the ISR. And please notice that the

timer is a count up timer in msc-51, we should set the value as minus for proper timer counter.

The code can work for a steady PWM output under at least 12-mc’s cycle. If #PWMCycle is

100 as a constant, then the value in DutyHigh can be 1 to 99. But in actual situation, DutyHigh

only work a steady condition while the value is between 15 and 85. Why ? That leaves a room

for reader to think about. However, it can work to set the value of DutyHigh register from 1 to

99 to control PWM output. The PWM cycle is determined by the constant PWMCycle. If

PWMCycle is 100 then the cycle is 100mc.

The maximum value for PWMCycle is 255.

Notice that only one PWM channel can be afforded for one timer if you use the code above.

8051 only supports 2 timers inside. It means only 2 PWM output can be designed in your

application. But in this way, it can provide a good control for changing the duty or output.

Like 1% - 100% speed control. The same approach can be used in timer mode 1 or 3 for

longer or shorter cycle of PWM output. Readers can develop their idea via the way.

But, if you just have limited usage for timer, say only one timer can be used in PWM

generating for more than 1 channel, how can a designer do for the purpose? The follow pseudo

code can give an example.

PWMPROC: Djnz PWMCount,PWM_01

 Mov PWMCount,#PWMCycle

 Mov DutyCount,DutyCycle

PWM_01: Cjne DutyCount,#00,PWM_02

 Clr PWMOUT

 Jmp PWM_03

PWM_02: Setb PWMOUT

PWM_03: Dec DutyCount

 Ret

Here, PWMCycle is a constant for fixing PWM cycle. The maximum execution time of the

code is 15 mc (machine cycle). If the system has a 50-mc’s interval between 2 timer interrupts,

then the occupation of the part is 15/50 * 100 % = 33.3%. It means that only two third

performance of CPU for main program. In some application, the performance is acceptable.

The PWM cycle will be calculated by #PWMCycle x 50 mc. The control level is from 0 ~

PWMCycle. For example, if PWMCycle equals to 10, the PWM Cycle is 10 x 50 = 500 mc. If

Fosc is 12 MHz, 1 mc = 1 us. In the case, 2 KHz is the frequency of the PWM output, and the

control level can be defined from 0 to 10 only.

Why do we give up the 100% control for output? There are so many reasons. Some

applications didn’t need to control so in detail. Some applications need more than one PWM

output channels. It may lose some for output levels but win for output channels under the

strategy. But, how can we increase the PWM channel? Let’s go for further step. The following

pseudo code works for 2 channels PWM outputs. In practice, PWMCycle1 and PWMCycle2

can be two constants with different values. To analyze the PWM outputs, about 30 mcs

execution time in the code section. If the interval between timer interrupt is 100 mcs, the

performance of the ISR is 30/100 = 30%. That just remains 70% for main program. Be aware

of the PWM cycle equals to #PWMCycleN times Time Interval between timer interrupts. That

senses we have to abandon getting high frequency of PWM outputs in order to get more

channels.

PWMPROC1: Djnz PWMCount1,PWM_011

 Mov PWMCount1,#PWMCycle1

 Mov DutyCount1,DutyCycle1

PWM_011: Cjne DutyCount1,#00,PWM_012

 Clr PWMOUT1

 Jmp PWM_013

PWM_012: Setb PWMOUT1

PWM_013: Dec DutyCount1

;

PWMPROC2: Djnz PWMCount2,PWM_021

 Mov PWMCount2,#PWMCycle2

 Mov DutyCount2,DutyCycle2

PWM_021: Cjne DutyCount2,#00,PWM_022

 Clr PWMOUT2

 Jmp PWM_023

PWM_022: Setb PWMOUT2

PWM_023: Dec DutyCount2

 Ret

The above pseudo code gives an example for 2 PWM outputs. Use the same way to cascade

the code (please look inside of PWMPROCn) to output additional PWM channel. However,

survey for the above code just gives a hint for designer to generate “Low Frequency

Multi-PWM outputs. All the concepts are described prior to the article.

The follow example gives an implementation for outputting 2 PWM’s wave using DIP switch.

The speed control is from 0 to 15: 0 for stop, 15 for full speed. Using the same design can be

afforded using RS-232, AD control…, etc. The advantage of this code is to improve the way

during setting speed control inside of the program. Anytime when you want to change the

output, just update the value of registers DutyCycle1 or DutyCycle2, the ISR will

automatically execute the core process of PWM outputs. It let the designer need not waste

time to synchronize the output using complex way such as FSM.

Example Schematic:

Example Source Code:

;Project: Sample code for Dual PWM outputs

; Written By Charles C. L.

;

;Assembler : 2500 A.D. 8051 Macro Assembler

;Chip: 89C2051

;

; P3.0 for PWM1 output

; P3.1 for PWM2 output

;

; P1.0~P1.3 : Speed Control for PWM1

; P1.4~P1.7 : Speed Control for PWM2

;

; Definition of I/Os

PWMOUT REG P3

DIPSW REG P1

PWM1Out REG PWMOUT.0

PWM2Out REG PWMOUT.1

;

; Registers for PWM1

PWMCount1 REG R2

DutyCount1 REG R3

DutyCycle1 EQU 31h

; Registers for PWM2

PWMCount2 REG R4

DutyCount2 REG R5

DutyCycle2 EQU 32h

; Common Flags for PWM (unused in the sample)

PWMFLAG EQU 40h

;

;Constant for timer0 setting

TMR0VAL EQU -100

;

;Constantans for PWMs' Cycle setting

PWMCycle1 EQU 15

PWMCycle2 EQU 15

;

; Program start here

;

; Reset vector

 ORG 000h

 JMP Main

;

; Timer 0 interrupt vector

 ORG 00Bh

 JMP TIMER0

;

; Setup Stack Pointer and then

; Initialize System and PWM output

;

Main: Mov SP,#70h

 Call SysInit

 Call PWMInit

;

; The real main program is in a program loop

; Here is the beginning of the loop

MainLoop:

 Mov A,DIPSW ;Read DIP switch

 Anl A,#0Fh ; Get the LSNibble

 Mov DutyCycle1,A ; Setting for PWM1

 Mov A,DIPSW ;Read DIP switch again

 Swap A

 Anl A,#0Fh ; Get the MSNibble

 Mov DutyCycle2,A ; Setting for PWM2

 Call Delay ;Little Delay for stablization

 Jmp MainLoop ;Forever Loop for normal operation

;

; System Initialization

;

SysInit:

 MOV TMOD,#00010010B ; TMR0:MODE 2 TMR1:MODE 1

 MOV TH0,#TMR0VAL ; Initial Timer0 Value

 MOV TL0,#TMR0VAL ; with TMR0VAL

 MOV IE,#10000010B ; Enable Timer0 interrupt

 SETB TR0 ; Start Timer0

 Ret ; Return

PWMInit:

; Set up parameters for full stop of PWM1

 Mov PWMCount1,#PWMCycle1

 Mov DutyCount1,#0

 Mov DutyCycle1,#0

;

; Set up parameters for full stop of PWM2

 Mov PWMCount2,#PWMCycle2

 Mov DutyCount2,#0

 Mov DutyCycle2,#0

 Ret

;

; The Timer0 Intrrupt Subroutine

; gives a 100us period per interrupt

;

TIMER0:

PWMPROC1:

 Djnz PWMCount1,PWM_011

 Mov PWMCount1,#PWMCycle1

 Mov DutyCount1,DutyCycle1

PWM_011:

 Cjne DutyCount1,#00,PWM_012

 Clr PWM1Out

 Jmp PWM_013

PWM_012:

 Setb PWM1Out

PWM_013:

 Dec DutyCount1

;

PWMPROC2:

 Djnz PWMCount2,PWM_021

 Mov PWMCount2,#PWMCycle2

 Mov DutyCount2,DutyCycle2

PWM_021:

 Cjne DutyCount2,#00,PWM_022

 Clr PWM2Out

 Jmp PWM_023

PWM_022:

 Setb PWM2Out

PWM_023:

 Dec DutyCount2

 Reti

;

Delay: Mov R7,#100

Dly0: Mov R6,#100

Dly1: Nop

 Nop

 Djnz R6,Dly1

 Djnz R7,Dly0

 Ret

